

FACULTY OF ENGINEERING END OF SEMESTER EXAMINATIONS - APRIL 2025

PROGRAMME: BACHELOR OF PETROLEUM ENGINEERING

YEAR/SEM: YEAR 1/SEMESTER 2

COURSE CODE: ELE1231

NAME: ELECTRICAL PRINCIPLES II

DATE: 2025-04-14

TIME: 2:00-5:00PM

INSTRUCTIONS TO CANDIDATES:

- 1. Read the instructions very carefully
- 2. The time allowed for this examination is STRICTLY three hours
- 3. Read each question carefully before you attempt and allocate your time equally between all the Sections
- 4. Write clearly and legibly. Illegible handwriting cannot be marked
- 5. Number the questions you have attempted
- 6. Use of appropriate workplace examples to illustrate your answers will earn you bonus marks
- 7. Any examination malpractice detected will lead to automatic disqualification.

DO NOT WRITE ANYTHING ON THE QUESTION PAPER

Section A In this section A, Answer any 3 Questions. Each Question is 20 Marks.

Question 1:

- What is the meaning of Low Pass Filter (LPF).
- Draw the frequency response and the phase shift of the Low-pass *RL* network
- Draw the R-L circuit implementation of the LPF simple. Drive the relation between the input and output of the circuit.
- What is the cut-off frequency of the filter. Derive an expression for the LPF cut-off frequency.

Question 2:

- Find the h parameters, h₁₁, h₁₂, h₂₁ and h₂₂, of the circuit shown in Figure 1
 Note: In case of using h parameters, the input and output voltages and currents are related by the equations:
- $v_1 = h_{11} i_1 + h_{12} v_2 ...(i)$ $i_2 = h_{21} i_1 + h_{22} v_2 ...(ii)$

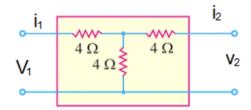


Figure 1

Question 3:

a. Calculate the necessary resistor value (R1) in the circuit of Figure 6 to give it a voltage gain of 30:

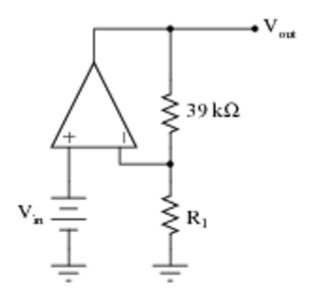


Figure 6

b. Calculate the voltage gain for each stage of the amplifier circuit of Figure 7 (both as a ratio and in units of decibels), then calculate the overall voltage gain:

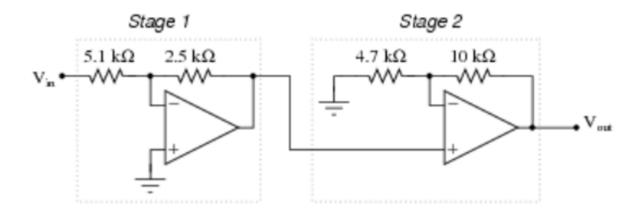


Figure 7

Question 4:

It is required to design a logic circuit that has three inputs A, B, C and one output Z. The output will be \hat{a} ?? $1\hat{a}$? \hat{a} ! if two or more of the input signals are $1\hat{a}$??s.

- Construct the truth table
- Write the logic function that describes the relation between the inputs and the output in the Sum of Product (SOP) form
- Find the minimum form of the relation using Karnaugh Map.
- Draw the logic circuit that implements the relation.

Section B In this section B, Answer any 2 Questions. Each Question is 20 Marks.

Question 1:

a. Consider Figure 2, calculate the voltage gain for each stage of this amplifier circuit (both as a ratio and in units of decibels), then calculate the overall voltage gain:

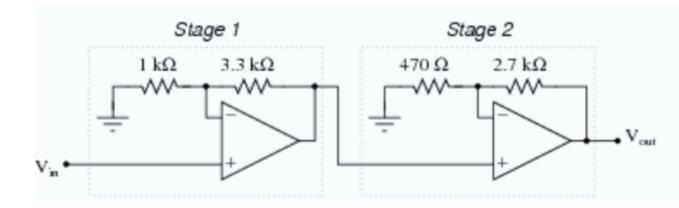


Figure 2

b. For the difference amplifier circuit shown, determine the output voltage at terminal A.

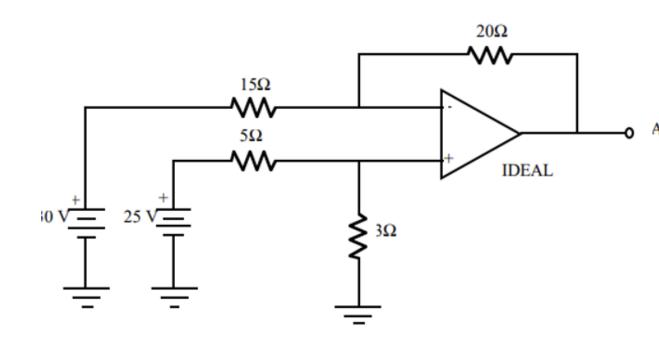


Figure 3

Question 2:

- Convert the decimal number $(457)_{10}$ to base 7 The number $(654)_7$ is written in base 7, find its

Question 3:

- What is the meaning of High Pass Filter.
- Draw the frequency response and the phase shift characteristics of a high-pass RC network
- Draw the R-C circuit implementation of the HPF simple. Drive the relation between the input and output of the circuit.
- What is the cut-off frequency of the filter. Derive an expression for the HPF cut-off frequency.

Question 4:

It is required to design a logic circuit that has three inputs A, B, C and one output Z. The output will be â??1â?• if two or more of the input signals are 0â??s.

- Construct the truth table
- Write the logic function that describes the relation between the inputs and the output in the Sum of Product (SOP) form
- Find the minimum form of the relation using Karnaugh Map.
- Draw the logic circuit that implements the relation.