

FACULTY OF ENGINEERING END OF SEMESTER EXAMINATIONS - APRIL 2025

PROGRAMME: DIPLOMA IN ELECTRICAL AND CONTROL ENGINEERING

YEAR/SEM: YEAR 1/SEMESTER 1

COURSE CODE: DEE1104

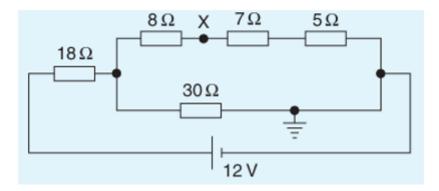
NAME: ELECTRICAL ENGINEERING SCIENCE I

DATE: 2025-04-14

TIME: 9:00AM-12:00PM

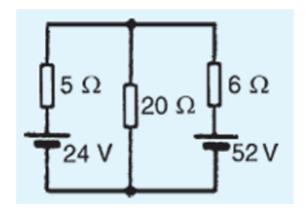
INSTRUCTIONS TO CANDIDATES:

- 1. Read the instructions very carefully
- 2. The time allowed for this examination is STRICTLY three hours
- 3. Read each question carefully before you attempt and allocate your time equally between all the Sections
- 4. Write clearly and legibly. Illegible handwriting cannot be marked
- 5. Number the questions you have attempted
- 6. Use of appropriate workplace examples to illustrate your answers will earn you bonus marks
- 7. Any examination malpractice detected will lead to automatic disqualification.

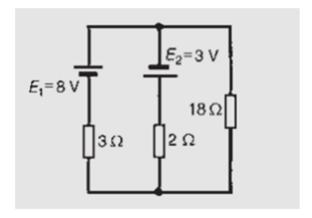

DO NOT WRITE ANYTHING ON THE QUESTION PAPER

Section A Attempt any 2 questions in Section A

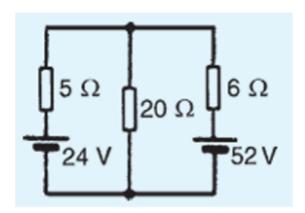
Question 1:


For the circuit shown in Figure, calculate

- a. The current flowing through the 18Ω resistor (07 marks)
- b. The voltage drop across the 7Ω resistor (06 marks)
- c. The current through the 30Ω resistor (06 marks)
- d. The power developed in the 8Ω resistor (06 marks)


Question 2:

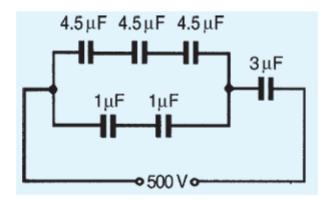
Use the superposition theorem to determine the current in each branch of the arrangement shown in Figure below. (25 marks)


Question 3:

Use Superposition theorem to determine the current in through the 3 Ω , 2 Ω and 18 Ω resistors

Question 4:

Use the superposition theorem to determine the current in each branch of the arrangement shown in Figure below. (25 marks)

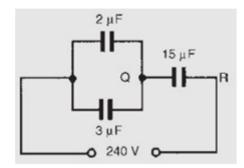


Section B Attempt any 2 questions in Section B

Question 1:

• 1.

- a. Find the capacitance to be connected in series with a 10μF capacit equivalent capacitance to be 6μF.
- For the arrangement of capacitors shown in Figure below Find
 - i. The equivalent circuit capacitance
 - ii. The voltage across a 4.5μF capacitor.


Question 2:

- a. Define the following terms Electric field, Magnetic flux and magnetic flux density (06 Marks)
 - Sketch a diagram of two bar magnets close to each other and indicate clearly all the poles and all magnetic field lines (03 Marks)
 - c. Calculate the force between two point charges $q1 = +16\mu$ C and $q2 = +12\mu$ C separated by a distance of 6mm. (05 Marks)
 - d. A direct current of 4A flows into a previously uncharged 20μF capacitor for 3ms. Determine the p.d. between the plates. (06 Marks)
 - e. Two parallel rectangular plates measuring 200mm by 400mm carry an electric charge of $0.4\mu C$. Calculate the electric flux density. If the plates are spaced 5mm apart and the voltage between them is 0.5kV, determine the electric field strength. (05 Marks)

Question 3:

Capacitances of $1\mu F$, $3\mu F$, $5\mu F$ and $6\mu F$ are connected in parallel to a direct voltage supply of 100 V.

- a. Determine
 - i. The equivalent circuit capacitance, (04 marks)
 - The total charge and (03 marks)
 - iii. The charge on each capacitor (03 marks)
- For the arrangement shown in Figure below find
 - i. the equivalent capacitance of the circuit, (05 marks)
 - ii. the voltage across QR (05 marks)
 - iii. the charge on each capacitor (05 marks)

Question 4:

- a. A magnetic pole face has a rectangular section having dimensions 200mm by 100mm. If the total flux emerging from the pole is 150μ Wb, calculate the flux density. (08 Marks)
- b. A magnetizing force of 8000A/m is applied to a circular magnetic circuit of mean diameter 30cm by passing a current through a coil wound on the circuit. If the coil is uniformly wound around the circuit and has 750 turns, find the current in the coil. (07 Marks)
- c. An iron ring of mean diameter 10cm is uniformly wound with 2000 turns of wire. When a current of 0.25A is passed through the coil a flux density of 0.4T is set up in the iron.

Find (10 Marks)

- i. The magnetizing force
- The relative permeability of the iron under these conditions.